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Abstract--Effects of elastic viscosity and diffusion resistance during the growth of vapour bubbles in a 
superheated polymer solution are investigated. Based on the approximate solutions of the equations of 
interphase interaction, the influence of the relaxation behaviour of a fluid, diffusion phenomena and 
thermodynamic non-ideality of the solution on the rate of the expansion of vapour bubbles is analysed. 

INTRODUCTION 

The evolution of vapour bubbles in a superheated 
liquid plays a crucial role in the processes of boiling. 
In particular, the rate of growth of bubbles is one of 
the parameters that determines the intensity of heat 
removal from a heating surface. For low-molecular 
fluids, including b:inary solutions [1], the phenomenon 
has been investigated well, in contrast to polymer 
systems, the boiling of which is accompanied by mani- 
festation of a number of specific factors. Theoretical 
investigation of their role and effect is of special inter- 
est in view of the scarcity of available experimental 
data and differences in the interpretation of results 
obtained. Note that knowledge of the rate of expan- 
sion of vapour cavities is also important for predicting 
the rate of solvent removal in certain technological 
processes for obtaining high-molecular compounds. 
This determines one more applied aspect of the 
problem. 

If the superheat throughout a volume is produced 
by pressure reduction, the initial stage in the growth 
of a vapour bubble is determined by the added inertia 
of the liquid. At this stage of the process an essential 
role can be played by the rheological properties of 
the liquid, the effect of which on the dynamics of 
spherically symmetric interphase interaction was 
investigated in refs. [2-5]. The specific feature of the 
dynamic stage in t]ae growth of the cavity, the duration 
of which can be evaluated with the help of the Ray- 
leigh time scale tr: = Ro(P2/P20) 1/2, is a change of the 
pressure in a bubble and the possibility of oscillations. 
After the equalization of pressure in phases, a thermal 
stage sets in when the rate of growth of the inclusion 

is determined by the ability of the liquid to supply 
heat for phase transition. The expansion of the vapour 
cavity in the thermal regime is described by Scriven's 
self-similar solution [6]. Also considered in ref. [6] was 
the case when the carrier phase was a binary solution. 
Later publications on the dynamics of vapour bubbles 
in binary systems were reviewed in ref. [7]. A numeri- 
cal analysis of the collapse of vapour bubbles in a 
binary solution with thermal and inertial stages can be 
found in ref. [8] ; small oscillations were investigated in 
ref. [9]. 

The present work is aimed at extending the basic 
results pertaining to the growth of vapour bubbles to 
the case of a polymer solution. Certainly, a complete 
solution of the non-linear thermal and dynamic prob- 
lem concerning the growth of a vapour bubble in a 
relaxing two-component liquid is possible only with 
the help of numerical methods [10]: however, approxi- 
mate analytical solutions that reflect the basic features 
of the evolution of inclusions are also of interest. In 
the following, two solutions of this type are considered 
that allow one to isolate solvent in a pure form and 
perform a successive analysis of the role of rheological 
effects and diffusional transport of a solvent during 
the expansion of bubbles in a polymer solution. 

EFFECTS OF VISCOELASTICITY 

Radial flows in the vicinity of a spherical bubble 
are classified as elongational [11]. The available data 
[12, 13] point to the possibility of the use of the fol- 
lowing types of equations for describing the rheo- 
logical behaviour of polymer fluids in such flows 
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NOMENCLATURE 

c2 specific heat of fluid Sn 
D* reduced coefficient of diffusion, D/Do t 
D/Dt Jaumann derivative T 
e rate-of-strain tensor v 
j intensity of phase transitions 
Ja Jacob number, c2ATp2(pll) -1 
k mass concentration of solvent in liquid 

phase 
Kp density ratio of solvent and polymer qs 
1 specific heat of evaporation K 
Le2 Lewis number for liquid phase, a2/Do 2 
p pressure p 
P~0 pressure of pure solvent vapours a 
P~0 pressure of saturated vapours of 

solvent above solution ~0~ 
r radial axis of spherical coordinate 

system with origin at the bubble centre Z 
R bubble radius 
Rep Reynolds number based on 

Newtonian viscosity of solution, 
go(PzlApl)~/E/(4q) 

Re~ Reynolds number based on 
Newtonian viscosity of solvent, 
go(P21Apl ) ~/2 / ( 4rl~) 

Scriven number, AT/AT. 
time 
temperature 
radial velocity component. 

Greek symbols 
~/ Newtonian viscosity of polymer 

solution 
shear viscosity of solvent 
thermal conductivity coefficient 
relaxation time 
density 
surface tension coefficient 
extra-stress tensor 
volumetric condensation of solvent in 
solution 
Flory-Huggins constant. 

Subscripts 
R phase interface 
s solvent saturation state 
1 vapour 
2 liquid 
0 equilibrium state. 

= ~, ~(k) + 2r/s e 
k 

~(k)+2k[Dz(k)/Dt--ct(x(k)'e+e'~(k))] = 2q~e. (1) 

The use of more complex versions of the generalized 
Maxweltian model with the character of variation in 
longitudinal viscosity similar to equation (1) does not 
cause any fundamental changes in the results of the 
calculations [14]. For the analysis to be more clear, 
only one non-linear relaxing oscillator in model (1) 
will be taken into account, with the assumption that 

x = ~o)+~(~) ~(s) = 2q(1-fl)e. (2) 

Here fl characterizes the contribution of the Maxwel- 
lian element to the effective viscosity of the solution 
q, whereas the parameter 1/2 < ct ~< 1 regulates the 
effect of non-linear terms. Then, the Rayleigh gen- 
eralized equation [15] that describes the radial motion 
of the spherical phase interface can be presented in 
the form 

J + @ +  T = S. (3) 

$1 = J, 2flq I' e-(~-t)/a(v2~-v 2~) 
o~2 R 4~ J0 

x ( v - v )  1.R:O-~)(~)k(Od~ 

v = R3(¢) v = R3(t) $2 = --4r/(1--fl)l~R -I 

S = $ 1 + $ 2  T = 2 a R  l j=p2(R_g+3/21~z) 

Ap = P2 (O0) - - P  l" (4) 

Equation (3) reflects the balance of the forces of iner- 
tia J, pressure Ap, surface tension T and 'rheological' 
force S. Note that the integral J,(t), which in equation 
(3) characterizes the influence of the relaxing portion 
of the stress tensor, can be determined from the system 
of first-order differential equations at the boundary 
values of the parameter ~ from the region of its vari- 
ation (ct = 1/2, 1), for which there are the following 
equations equivalent to equation (4) : 

J i / 2+ (2 - '  + 2 R R - ' ) J , / :  = -4flq2 '/~R -1 (5) 

Jl = J l l + J 1 2  

i l l  +(2  -1 +4 /~R- l ) J l l  = -2fl~/2 - l /~R-I  

J12-~-(2 -1 + I~R-')J,2 = --2flrl2-1t~R -1. (6) 

For ~ = 1/2, equations (2) and (5) yield Jm( t )  = 
z!~)(R, t). This means that at ~ = 1/2, similarly to con- 
ventional viscosity for a Newtonian fluid, the rheo- 
logical properties of a polymer solution during the 
evolution of a bubble (growth, collapse, oscillations) 
manifest themselves only in the zone adjacent to the 
phase interface and can be taken into account only in 
the boundary condition when deriving an equation 
for R(t). When ct = 1, J1 (t) < z!~)(R, t), and account- 
ing for the rheology of the medium only via the boun- 
dary condition leads to a certain acceleration in the 
expansion of the inclusion as compared with the solu- 
tion of the exact system of equations (3) and (6). 

For the initial portion of the growth of a bubble 
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from its equilib:rium state, relations (4) yield 
Rp(t) < R(t )  < Rs(t), where Rp(t), Rs(t) is the law of 
the expansion of a cavity in a Newtonian fluid with 
the viscosity of the: solution and solvent, respectively. 
A similar result tbr the Oldroyd model fluid was 
obtained somewhat differently in ref. [3], and for a 
fluid with a spectrum of relaxation times in ref. [5]. 
To investigate the non-linear stage of the process, 
write a system of equations (3), (5) (ct = 1/2) in the 
inertialess approximation assuming the Reynolds 
number  R e  based on the effective longitudinal vis- 
cosity ~/l to be small [Re = (rl/rh)Rep]. After the result 
was rendered dimensionless with the assumption that 
Ap = const, and capillary pressure was neglected (for 
bubbles with R >> 10 6 m), the following relations 
were obtained : 

2 + 2 ( z - z O ( z - z 2 )  = 0 z = Ycx -1 

zl,2 = - - A / 4  -T - (A2 /16+B/2)  1/2 x = x (z )  = R /Ro  

A = 2" -1 (1 - fl) - 1 ( 1 - 2kA*Rep) 

B = k R e p 2 *  1(1--fl)-1 k = - s g n ( A p )  

z = t/to to = Ro(P2/IApl)  m 2" =2/ t0 .  (7) 

Analysis of equation (7) on the phase plane for a 
growing bubble (k = 1) shows that in the non-linear 
stage also, a cavity expands faster than in a Newtonian 
fluid with equivalent viscosity : zp ~< .71 ~ Zs, Zp = R%,  
z~ = Re~, where Zp, zs is the asymptotic rate of growth 
of a cavity in a Newtonian fluid with the viscosity of 
solution (r/) and solvent [~h = (1-fl)r/] ,  respectively. 
For  2" << 1 

Z 1 = Zp +2fl2" Re~ 

and for 2* >> 1 

zl = :'~ - 1f2/72"-1 (1 - /7 ) -1 .  

Thus, polymer additives slow down the growth of a 
bubble in an infinite liquid, but  because of the mani-  
festation of elastoviscous effects the rate of growth 
turns out to be higher than in a Newtonian fluid with 
the viscosity of a solution. 

Note that collapse of a cavity (k = - 1) leads to the 
opposite result [16] : z --+ zl when z --+ oo (the quiescent 
point  z2 is unstable) and the speed of closure of a 
cavity in the asymptotic regime satisfies the inequality 
Zp ~< zl ~< 0, where Zp = - R e p .  This is explained by 
the different behaviour of the stress tensor component  
z~J ) which determines the effect of  viscoelastic proper- 
ties of the liquid on the dynamics of the cavity in 
compression and extension flows. According to ref. 
[14], the quanti ty I r~J)l may attain substantially higher 
values in the second case than in the first. Results 
similar to those given follow from equations (3) and 
(6) for ~ = 1. 

THERMAL RI'GIME OF THE GROWTH OF 
BUBBLES 

The evolution of vapour inclusions in a polymer 
solution at the thermal stage is specifically due to the 

following three factors. First, because of the great 
difference in molecular masses, phase transitions in the 
system considered occur only with a low-molecular 
solvent. Second, polymer solutions are usually sub- 
stantially non-ideal and therefore in practice one 
observes substantial deviations in the volatile com- 
ponent  saturated vapour pressure above the solution 
from Raoult 's  law. Finally, in the process investigated 
one can observe the dependence of the velocity of 
diffusional transport  of  a low-molecular component  
to the l iquid-vapour  interface on concentration, 
resulting from the changes in the binary diffusion 
coefficient [17]. The significance of the factors listed 
increases with boiling systems which have the lower 
critical temperature of mixing, and which can lami- 
nate on increasing temperature in the region T < Ts. 
In the latter case, the polymer-enriched phase, which 
usually has a higher density, finds itself near the heat- 
ing surface (with heating from below), as a result of  
which the growth of vapour bubbles occurs under  
conditions of deficit of  the volatile component.  

Let us investigate the thermal stage in the expansion 
of a vapour cavity in a superheated polymer solution 
[T20 > Ts(k0)], assuming the pressure and tem- 
perature in the vapour phase to be steady : 

Pl =P20 T1 = Ts(P20,kR) = T2R kR = k ( R , t ) .  

(8) 

SELF-SIMILAR SOLUTION 

Equations of heat conduction and diffusion in a 
fluid have the form 

+VzRR r -  ~ =  - azr  2 
8 t 2 Orr (9) 

--Ot +V2RR r -  Or = r - :  Dr  2 ~Tr " (10) 

Since within the ranges Ts(kR) < T2 < T2o and 
kR < k < k0 the thermal conductivity of the solution 
az changes less [18] with variation in temperature and 
concentration than the coefficient of binary diffusion 
D, it is assumed in what follows that a2 -~ const. More- 
over, since the thermal boundary  layer is much thicker 
than the diffusional one, it can be assumed that within 
the latter D = D(k ,  T2R). 

Boundary conditions for equations (9) and (10) are 

T2 = T20 k = k 0  r =  oo (11) 

j l~__V2  R = p £ l j  1~ = p l l j  (12) 

• Ok 
j = (R--VzR)p2kR + p 2 D ~ r  (13) 

0r2  
j l =  x2 O~ r =  R.  (14) 
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Equations (12) and (13) yield 

P2 Okl 
j =  l ~  O~r r=R. (15) 

For conditions which have little in common with 
critical conditions, e = Pl/P2 << 1 and then it is possible 
to assume that V2R = /~(1 --e) ~ /~. 

Let us introduce the variable r /=  rR- ~ and obtain 
the solution of equations (9) and (10) of the form 
T = T(r/), k = k(r/). The dependence of the diffusion 
coefficient on concentration will be given in the form 
D = Do [1 +f(k)] .  The self-similar solution of the 
problem exists if 

Equations (18) and (19) yield 

/~ = 1 + ( A + C ~ - ' )  K(r/) dr/ 

/~0 (if) = 1 + C~ -1 I i  K(r/) dr/ 

h = RRa2 j = const hi = RRDo 1 = const. (16) 

Let T = T/T2R, then equation (9) yields [10] 

= 1 -~-Cl 1 I i  ~1--2 exp [ -h ( f f z /2+  (1 - e ) / q ) ]  dr/ 

Cl = (7"~2°- 1)-1Jl' 2 

x exp [-- h(q2/2 + (1 - e)r/- 1)] dr/ 

1~20 = T2olT R. (17) 

In contrast to equation (9), equation (10) is non-  
linear. It does not  have an analytical solution when 
the function D = D(k(tl)) is arbitrary. Note that for a 
plane case of non-linear diffusional transport  under  
self-similarity conditions, the field of concentrations 
can be defined in quadratures at specific forms of the 
function D = D(k) (for example, linear, exponential, 
power-law, etc. [19]). However, the resulting relations 
are rather cumbersome and usually have a parametric 
character, and their investigation requires using a 
computer. Now, an approximate expression for the 
function k = k(r/) is to be obtained. Introduce a new 
variable/¢ = k/kR. The solution of equation (10) will 
be sought in the form [20] /~ =/~0+/~.,  where/~0 is 
the solution of a linear problem and /~* is the first 
approximation which takes into account non-linear 
effects. The following boundary-value problems are 
used for determining/~0 and/~* : 

d2/~° 2 d/~° 
- - + [ h l r / + 2 / r l - h , ( 1 - e ) r / -  ]~ -q  = 0 .  (18) 
dr/2 

/~°(1) = 1 /~o(~) =/~o = ko/kR 

d 2 ] ~ _ ~  * 
+[hlr/+2/r/-hl(1 - e ) , - 2 1 ~  - = --F(/~°(r/)) 

dr/2 a q  

2 d 2 -0 d/c° 
F('°(r/))=r/-  ~ q ( q f ( k  ( q ) ) ~ - )  

~*(1)  = ~ * ( ~ )  = o. (19) 

K(rl) = q-2 exp [ - h i  (q2/2+ (1 - e)q)] 

EjI ] A = F (/~0 (r/))K- 1 (r/) dq - K(r/) dr/ 
1 

j" Ill 1 x F(fc °(r/))K -l(q) dq K(u) du dri. (20) 
1 

The solutions obtained involve unknown parameters : 
the constant  h which determines the rate of bubble 
growth (hi = h Le2), the phase interface temperature 
T2R and the solvent concentration kR. In contrast to a 
one-component  fluid, the temperature T2R is unknown 
a priori and is associated with the surface con- 
centration kR by the phase equilibrium equation. 
Equations (12), (14) and (15) yield the following equa- 
tions for determining kR and h : 

h = p2CzTR (p,1)- '  (21) 
q=l 

dk 
h i =  pzkRPl l (1-- kR)- l ( ~ ) . =  l . (22) 

Formal  substitution of solutions (17) and (20) into 
equations (21) and (22) with the use of relation 
T2R = Ts (P20, kR) allows one to obtain easily a closed 
system of equations for determining h, but  this 
requires a laborious numerical investigation. The 
problem can be simplified for the case Ja >> 1 (the 
member Ja is determined from the factual super- 
heating of the fluid AT =/ '20  - T2R). Physically, the 
approximation considered corresponds to a thin ther- 
mal boundary  layer around a growing bubble. Since 
in polymer solutions Le2 >> 1, here the condition of 
the small thickness of diffusional boundary  layer 6D is 
also complied with. Investigation of the asymptotics 
of the obtained solutions in the region Ja >> 1 leads to 
the relations 

= 1 + (T2o - 1) erf [(x/3h/2)(r/- 1)] 

/~0 = 1 + (/~0 - 1) erf [(x/3hl/2)(r/-- 1)] 
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k = 1 + (/~o _ 1){1 +f(kR) 

+3hl  er f [ (x/3hl /2)(q-  1)] 

x (t/-- l)f(/~ ° (r/)) dr/} 

- 3 h , ( k 0 - 1 )  ; i  {(r / -  1) 

x f(/~0 (r/)) erf [(x/3h ~/2) ( r / -  1)] 

+ (x/2/3nhl)f(fc ° (rl)) 

x exp [ -  3/2hl (~l- 1)2]} d~/ 

+ (/~0 - 1)M, erf [ (x/3hl /2)0/-  1)] 

Ml = - { f (kR) + 3h~ f ~ O l - 1 ) f  (fc° (tl) ) d~l 

- 3h, f ;  [ ( r l -1 )e r f  ( (~ /3h l /2 ) ( , -1 ) )  

} 
(23/ 

Equation (23) giw~s 
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C = x / 2 a 2 J a = x / 2 D o D i  Ja<< 1 Di<< 1. 

Since here Ja < Jao, the rate of  the growth of  bubbles 
in a polymer solution is always smaller than in an 
equivalent single-component fluid. 

To close the relations obtained, it is necessary to 
use the phase equilibrium equation [22] 

Pvo/Pvo = q~, exp [1--~o, +X(1--tp~)2]. 

The dependence of  the pressure of  pure solvent 
vapours on temperature is described with the aid of  
the following approximation : 

P~0 = A exp ( -  B~ T). 

Simplify the expression for M~ by assuming a linear 
dependence of  diffusion coefficient on concentration 
in the interval (kg, ko). When f =  ~(/c-/~0), 
M~ = 07(1-~-~)(/~0- 1). The accuracy of  the linear 
approximation of  the functionf(/~) employed can be 
improved, if  one first determines /~R ----/~h, assuming 
07 = (dD*/d/~)~=~0 and then refines the value obtained 
by drawing a straight line through a point with the 
abscissa ]~m = 1/2 (/~0 +/¢h). Thus, the second iteration 
is executed with the value 07 = ( D * -  1)(]~m--, /~0) - I  , 

where D*  = D* (/Cm). Simultaneously the temperature 
correction for D* is taken into account by T:0 in the 
argument of  the function Do = Do(T~o) for the T~R 
value found in the first iteration. For  calculations it is 
convenient to represent equation (24) in the form 

Sn = xG l ( l + ~ l X ) ( 1 - - ~ X ) / ( l + x - - k 0 )  

G=eJaoLe~/2 x = k o - k R  ~ = ~ ( l - x  -~) 

ct = 07kff ~ Sn = AT /AT , .  (29) 

The data of  numerical investigation of  equation (29) 
are presented in Figs. 1-3. The thermophysical par- 

20 

15 ~ /2" 

0.99 0.96 0.93 0.90 
ko 

Fig. 1. Limiting superheating during the growth of vapour 
bubbles. 1, 2, 2', 2": l = 2.3 x 10 j6 kg-~ ; c2 = 3 x l0  3 J kg -I 
K -~, a2=10  -7 m 2 s -l, D o = 5 x l 0  -ll m 2 s- l ;  3, 4: 
/=3.6x105 J k g - i ,  c2=2x103 J kg - 1 K  I, a 2 = 8 x 1 0 - 8  
m2s-~,D0 = 5x 10-H m2s-~; 1~,: c~ = 0 ;2 ' , 2" :e  = 1, - 1  ; 

1, 3 : X = 0.1 ; 2, 4: Z = 0.4; Ko = 0.7. o, J~o = 1. 

35 

% %  

_ - ", 

I S -  - , C 4  , ~ _  - . . . . . ,  

s ~ q . . . .  
0.4 0.6 0.8 1.0 1.2 

G 

Fig. 2. Dependence of the effective Jacob number for a vap 
our bubble growing in a superheated aqueous solution of a 
polymer on the parameter G. AT, = 15 K, Z = 0.1, Kp = 0.7 ; 
1 5 :/Co = 0.99, 0.95, 0.7, 0.5, 0.3 ; 2' 2" : ko = 0.95 ; 3--3" : 
ko = 0.7; 4', 5': ko = 0.5, 0.3; 1-5; 2', 3'; 2"; 2", 3", 4', 5': 

~t=0, -0 .5 ,0 .8;2 .  

ameters of  the solution were estimated taking into 
account the corresponding values for a solvent and 
recommendations given in ref. [18]. 

A characteristic feature of  the curves of  the l iquid-  
vapour phase equilibrium for polymer solutions in the 
coordinates p, k or  T, k is the presence of  almost a 
plateau in the region of  rather small contents of  the 
polymer (k,  ~</Co ~< 1). For  the ko values in this inter- 
val it is possible to determine such a number  Jao, at 
which, when 1 < Jao < Jao, diffusional retardation of  
the growth of  vapour  bubbles does not show up due 
to a weak dependence of  Ts (or Ps) o n  k R. Let us 
evaluate Jao or the corresponding superheat A T ,  from 
the condit ion Sn = 0.99 (the deviation of  the effective 
superheat AT  from the volumetric one AT,  does not  
exceed 1%). The results of  the calculation are pre- 
sented in Fig. 1. As can be seen, the thus obtained 
conventional limiting superheat AT,  decreases with 
a decrease in ko and increases in the non-linearity 
parameter ~, whereas with the growth of  the F lo ry -  
Huggins constant it increases. The increase in Z also 
leads to the extension of  the range k ,  ~< ko ~< 1. The 
value AT,  depends substantially on the diffusion 
transfer rate" as the latter falls, a decrease in the limit- 
ing superheat is observed below which bubbles in a 
polymer fluid grow as in a pure solvent. For  polymer 
solutions in volatile organic solvents, AT ,  is lower 
than the value for an aqueous solution of  the same 
concentration. 

When Jao > Jao > 1, one can see that diffusion 
retards the growth of  vapour  bubbles in a solution. 
Note  that in low-molecular binary systems with a 
clearly observed dependence T~ = Ts(ko), a similar 
effect is absent in the entire range o f  the values of  ko. 
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AT, [K] 30 40 50 60 ,o i 

" .  " .  / 

-,.. 

0.4 ~ 3 . 1  

0.1 2.5 
15 AT, [K] 25 35 

Fig. 3. Effect of the volumetric superheat of a solution on the Scriven and Jacob numbers. (--) Polymer 
solution in toluol; (---) aqueous solution; 1-5: ct = 0, ko = 0.99, 0.95, 0.7, 0.5, 0.3; 1-4: Z = 0.1 ; 5, 5': 
solution of polystyrole in toluol at ko = 0.3 ; 5' : ~t ~ 0, calculation with the use of the function D = D(T, 

~01) from ref. [24]. Thermophysical parameters are the same as for the curves in Fig. 1. 

It should be emphasized that the scale of the effect is 
closely associated with the deviation of the behaviour 
of a solution frora an ideal one : the larger the devi- 
ation, the less is the effect. This can be easily under- 
stood, since in t]ae case of a very large difference 
between the molerular masses of a solvent and solved 
substance, typical for a polymer solution, the graph 
of the function ]~ = Ts(ko) plotted on the basis of 
Raul's law passes virtually along the coordinate axes 
[23]. For this reason, the rate of growth of vapour 
bubbles in a polymer solution in compliance with the 
Flory-Huggins e~Luation is always smaller than for an 
equivalent ideal solution. 

Analysis of the curves in Fig. 2 shows that a 
decrease in the rate of diffusional transfer 
[G ~ (Le2) 1/2] under the conditions of a fixed super- 
heat AT, leads to a substantial decrease in the effective 
Jacob number Ja. The growth of the content of a 
polymer in a solution leads to the same result. The 
influence of the non-linearity of diffusional transport 
is higher for diluted solutions. This is explained by a 
decrease in the deviation of the surface concentration 
k R from the volumetric one k0 when k0 falls because 
of the typical growth of the derivative [(~Ts/t3kl in 
polymer fluids. The presence of an almost horizontal 
portion on the curve Ja = Ja (G) when k0 >~ 0.95 is 
explained by the existence of the limiting superheat 
AT, dependent on the Lewis number. 

The role of diffusional retardation with the growth 
of the volumetric superheating increases. This reveals 
itself in a decrease of the number Sn with a growth in 
AT, (Fig. 3). For solutions involving volatile organic 
liquids as solvents the effect is higher than for aqueous 
systems. For concentrated solutions the differences 
between the effective AT and volumetric AT, super- 
heats leads to the impossibility of substantially 
increasing in practice the rate of growth of vapour 

bubbles by increasing volumetric superheat. Curves 5 
and 5' are typical in this case. 

CONCLUSIONS 

The analysis carried out shows that the growth of 
bubbles in a large volume of a polymer solution occurs 
more slowly than in a solvent but faster than in a 
similar pure viscous fluid. Investigation of viscoelastic 
effects during the growth, collapse and pulsations of 
bubbles in a polymer medium can be conveniently 
carried out on the basis of differential equations of 
the dynamics of a cavity. These equations can be 
obtained by transformation of the Rayleigh non-linear 
generalized integrodifferential equation. The possi- 
bility of such a transformation is physically associated 
with the fact that rheological specific features of carry- 
ing phase and dissipative losses attributable to these 
features are substantial mainly in the vicinity of 
the phase interface--the zones of maximal velocity 
gradients. 

The rate of the expansion of vapour bubbles in a 
superheated solution of a high-molecular compound 
is lower than in a pure solvent due to diffusion resist- 
ance. In diluted solutions at rather small superheats 
(nevertheless satisfying the condition Jao > 1) the 
mechanism of diffusional retardation can be sup- 
pressed due to a weak dependence of Ts on ko, charac- 
teristic for macromolecular systems in this con- 
centration range. It is convenient to characterize this 
effect with the aid of the conventional limiting super- 
heat AT, below which the difference in the rates of 
growth of bubbles in a solution and a pure solvent 
can be neglected. The value of ATe, falls with the 
growth in the content of a polymer in the solution, 
increase in the deviation from ideal behaviour, 
increase in the number Le2 and with an increase in the 
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non-linearity parameter of  diffusional transfer. For  
binary systems containing as solvents organic liquids 
with low vapour generation enthalpy, the ATe. value 
is much smaller than for aqueous solutions. 

A criterion of  the display of  diffusion resistance 
during the growth of  vapour bubbles in a so lu t ion- -  
the number Sn--decreases with an increase in the 
volumetric superheat (Ze 2 number) in the heat ofvapour  
generation. The effect of  diffusional non-linearity with 
a decrease in the content  of  a polymer in a solution 
and with a decrease in the content of  a solvent becomes 
weaker due to the narrowing of  the interval (kR, ko) 
and to the increase in the saturation temperature on 
the phase interface. Calculations also showed that in 
concentrated solutions it is practically impossible to 
attain the values Ja >> 1 by increasing the superheat 
because of  the smallness of  the corresponding Sn 
numbers. 
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